
Efficient and extensible single molecule 
image analysis with PyStachio

Mark Leake is Anniversary Chair of Biological 
Physics at the University of York, where he is also 
Coordinator of the Physics of Life Group at the 
Departments of Physics and Biology, and one of 
the Research Champion for Technologies for the 
Future in the Vice Chancellor’s office.

Mark’s research team specializes in developing 
innovative methods of single-molecule biophysics 
to address a range of complex biological 
questions. One of these tools involves single-

molecule imaging with fluorescence microscopy at millisecond 
timescales. Post-experiment image analysis is a key part of this, and 
Mark and his team have devised, implemented, and refined several 
novel image analysis pipelines to extract key physical parameters 
such as molecular colocalisation, diffusion constants, and molecular 
stoichiometries in systems ranging from simple bacteria to complex 
human cancer cells.

Can you give us an overview of the project?

Did you work with a research software engineer (RSE) from 
the start of the project?

CIR
COMPUTATIONALLY INTENSIVE RESEARCH

This project was spearheaded by a postdoctoral research assistant 
(Dr Jack Shepherd) who has taken a leading role in image analysis in 
my group. However, to ensure the final product was truly extensible 
and future proof, we realised we needed to draw on the expertise 
of a professional software developer, and we turned to Ed Higgins, 
a Research Software Engineer in the University of York IT services 
department who has expertise across a range of programming 
languages including MATLAB and Python – the languages we moved 
between as part of this project.

Thanks to funding from organizations like BBSRC, EPSRC, the EU’s 
Marie Curie scheme, the Royal Academy of Engineers, and the 
Leverhulme Trust, my group has spent several years updating our 
fluorescence microscopes to take advantage of new large-chip 
sCMOS cameras and high-power high-stability excitation lasers and 
as a result we are now able to produce in the region of 1 TB of data 
per day, per microscope.

Mark Leake

Analysis of this quantity of data is a considerable challenge and 
our previous analysis software was proving to be a bottleneck, as 
well as presenting a high barrier to entry for new users. Led by a 
postdoctoral research assistant we therefore began the daunting 
process of consolidating our analysis routines into one package 
written in Python to make use of its natural modularity and highly 
efficient computational libraries such as NumPy.

The launch screen of PySTACHIO



Can you tell us more about your current or future research 
projects?
With the core single-molecule tracking in place, our focus is now 
turning towards adding functionality which will facilitate analysis of 
more complex microscopy data which relies on simultaneous imaging 
of multiple colour channels or separate polarizations of light. While 
this will require some new code being written, we now have a flexible 
base to modify which will ensure our ongoing modifications and 
additions are painless, maintainable, and sustainable.

We are also aiming to work towards more fully open science, and 
now that our codebase is in Python we have the new opportunity of 
using Jupyter Notebooks. In the future, we hope that we will be able 
to include a link in our articles where users can generate the figures 
in the paper themselves using sample data, the correct version of the 
code, and the reported analysis parameters.

We hope that the current movement towards transparency in science 
continues, supported by expert RSEs – in future, we intend to identify 
specific software needs during project conception and include RSE 
costs as part of grant proposals.

What are the key challenges that RSE collaboration has 
helped to overcome?
Translating a highly diffuse codebase between different programming 
languages while simultaneously consolidating it into one software 
platform is a challenging undertaking which presented many foreseen 
and unforeseen hurdles.

My research team’s previous analysis suite was in reality four or five 
different utilities which users chained together to produce a bespoke 
workflow for each experiment. As part of this project we therefore 
had to solve the problem of creating a program which could be
used with almost unrestricted flexibility while remaining one
cohesive piece.

Here Ed’s expertise was invaluable as he quickly designed an 
overarching data architecture which we can perform operations on in 
almost any order. Ed also suggested and implemented a GUI which 
is suitable for web or server hosting and considerably easier for new 
users to work with and implemented robust parallelization to improve 
performance – we have measured an order of magnitude decrease in 
runtime with identical data and parameters.

Ed also set up our GitHub and introduced workflows for future 
software development to ensure that our software is maintainable 
and sustainable – and avoid another total rewrite in the future!

Within the first discussion of project aims it was obvious that 
Ed’s support would prove absolutely invaluable as he had many 
suggestions for improvement and extension, such as developing a 
GUI which would allow the software to be web hosted or installed on 
a dedicated analysis server to reduce pressure on office workstations 
and make use of server-grade hardware including high-speed data 
interconnects.

Having worked with RSEs, will it change your approach in 
the future?
Our approach has certainly been changed by our collaboration with 
the RSE team. Apart from changing our primary analysis language 
and relying more on external libraries, we now use proper version 
control software and archiving, and will now be providing Zenodo-
generated DOIs of the exact state of the software used in our 
research publications to make sure that our research is truly open 
and reproducible.


